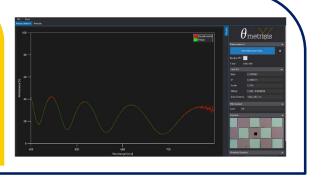
FR-uProbe: Extend your microscope in a powerful film thickness measurement tool

FR-uProbe is a stand-alone tool for applications that require spot size as small as very few microns, e.g. micropatterned surfaces, samples that exhibit a high level of scattering light and numerous others.

With **FR-uProbe**, local film thickness, optical constants, reflectance, transmission, and absorbance measurements in Vis/NIR, is just a matter of a click.

Applications

- Univ. & Research labs
- Semiconductors (Oxides, Nitrides, Si, Resists, etc.)
- MEMS devices
 (Photoresists, Si membranes, etc.)
- o LED
- Data Storage
- Anodization
- Hard/Soft coatings on curved substrates
- Polymer coatings, adhesives, etc.
- Biomedical (parylene, balloon wall thickness, etc.)
 And many more...


FR-uProbe, simply attaches to the C-mount adapter of most commercially available optical microscopes (reflectance and / or transmittance) and provides:

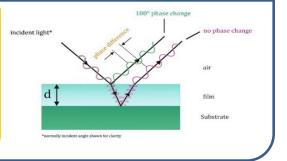
- Real-time spectroscopic measurements at the wavelength range supported by the microscope
- Film thickness, optical properties, non-uniformity measurements
- Imaging with an integrated, USB connected and high-resolution & quality color camera
- $\circ\,$ Unaffected performance of the microscope itself

Film Metrology & More...

Features

- Single-click analysis (no need for initial guess)
- Dynamic measurements
- Measurement of n & k, color
- 700+ materials in the database
- Save videos for presentations
- Multiple installations for off-line analysis
- Free of-charge Software update

Specifications


Microscope	Reflectance/Transmittance trinocular	
Spectral Range	400nm – 1000nm	
Thickness range (5X obj. lens)	15nm – 90μm	
Thickness range (10X obj. lens)	15nm – 80μm	
Thickness range (20X obj. lens)	15nm – 40μm	
Thickness range (40X obj. lens)	15nm – 10μm	
Refractive Index calculation	✓ /min. thickness: 100nm	
Thickness Accuracy ¹	0.2% or 2nm	
Thickness Precision ^{2,3}	0.02nm	
Thickness stability ⁴	0.05nm	
Camera	2 or 5Mpixel high resolution	
Working distance	Defined by obj. lens	
Spot size	100-2μm (see below)	
Light source	Microscope's light source (tungsten / LED)	
Wavelength resolution	0.8nm	
Number of Layers Measured	Max. 5 layers	
A/D converter	16 bit	
Power	USB – supplied	
Dimensions	300mm x 110mm x 40mm ⁵	

The measurement area (the area from which the reflectance or transmittance signal is collected) is relative to the microscope's objective lens and the FR-uProbe's aperture size

Objective Lens	Spot Size (μm)		
	500 μm Aperture	250 μm Aperture	100 μm Aperture
5x	100 μm	50 μm	20 μm
10x	50 μm	25 μm	10 μm
20x	25 μm	17 μm	5 μm
50x	10 μm	5 μm	2 μm

Principle of Operation

White Light Reflectance Spectroscopy (WLRS) measures the amount of light reflected from a film or a multilayer stack over a spectral range, with the incident light normal (perpendicular) to the sample surface. The measured reflectance spectrum, produced by interference from the individual interfaces is being used to determine the thickness, optical constants (n & k), etc. of free-standing and supported (on transparent or partially/fully reflective substrates) stack of films.

¹ Specifications are subject to change without any notice, ² Measurements compared with a calibrated spectroscopic ellipsometer and XRD, ³ Average of standard deviation of mean value over 15 days. Sample: 1micron SiO₂ on Si wafer, ⁴ Standard-Deviation of daily average over 15 days. Sample: 1micron SiO₂ on Si wafer. * no IR filter embedded at the microscope.